Math 3063	Abstract Algebra	Project 1	Solutions
	Prof. Paul Bailey	March 2, 2009	

Problem 1. Use induction to prove that, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Solution. For n = 1, we have

$$\sum_{i=1}^{n} i^2 = 1^2 = 1 = \frac{1(1+1)(2+1)}{6}.$$

Let n > 1. By induction,

$$\sum_{i=1}^{n-1} i^2 = \frac{(n-1)n(2(n-1)+1)}{6}$$

Adding n^2 to both sides gives

$$\sum_{i=1}^{n} i^2 = \frac{(n-1)n(2(n-1)+1)}{6} + n^2$$
$$= \frac{(n^2 - n)(2n-1)}{6} + \frac{6n^2}{6}$$
$$= \frac{(2n^3 - 3n^2 + n) + 6n^2}{6}$$
$$= \frac{2n^3 + 3n^2 + n}{6}$$
$$= \frac{n(n+1)(2n+1)}{6}.$$

Problem 2. Let m = 71 and n = 528. Find $x, y, d \in \mathbb{Z}$ such that mx + ny = d and d = gcd(m, n). Solution. We apply the Euclidean algorithm to find that

31

$$528 = 71(7) + 31$$

$$71 = 31(2) + 9$$

$$31 = 9(3) + 4$$

$$9 = 4(2) + 1$$

Thus gcd(71, 528) = 1. Rewinding, we find that

$$1 = 4(-2) + 9$$

= 9(7) + 31(-2)
= (31(-16) + 71(7))
= 71(119) + 528(-16)

Let d = 1, x = 119, and y = -16. Then mx + ny = d.

Problem 3. Let $a, b, c \in \mathbb{Z}$ be positive integers. Show that

(a) $a \mid a;$

(b) $a \mid b$ and $b \mid a$ implies a = b;

(c) $a \mid b$ and $b \mid c$ implies $a \mid c$.

Solution.

(a) (Reflexivity) Since $a = 1 \cdot a$, $a \mid a$.

(b) (Antisymmetry) Suppose $a \mid b$ and $b \mid a$. Then b = ma and a = nb for some $m, n \in \mathbb{Z}$. Thus b = mnb, and by cancelation, we have mn = 1. Thus $m = n = \pm 1$. Since a and b are positive, we must have m = n = 1, so a = b.

(c) (Transitivity) Suppose $a \mid b$ and $b \mid c$. Then b = ma and c = nb for some $m, n \in \mathbb{Z}$. Thus c = nma, so $a \mid c$.

Problem 4. Let $a, b, c \in \mathbb{Z}$ be positive integers.

Show that gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1.

Solution. We have seen that

$$gcd(a,b) = 1 \quad \Leftrightarrow \quad ax + by = 1 \text{ for some } x, y \in \mathbb{Z}.$$

 (\Rightarrow) Suppose that gcd(a, bc) = 1. Then ax + (bc)y = 1 for some $x, y \in \mathbb{Z}$. Thus ax + b(cy) = 1, so gcd(a, b) = 1. Also ax + c(by) = 1, so gcd(a, c) = 1.

(\Leftarrow) Suppose that gcd(a, b) = 1 and gcd(a, c) = 1. Then $ax_1 + by_1 = 1$ and $ax_2 + cy_2 = 1$ for some $x_1, x_2, y_1, y_2 \in \mathbb{Z}$. Multiplying these equations gives

$$a(x_1ax_2 + x_1cy^2 + by_1x_2) + bc(y_1y_2) = 1.$$

Thus gcd(a, bc) = 1.

Problem 5. Find the additive order of $\overline{6}$, $\overline{11}$, $\overline{18}$, and $\overline{28}$ in \mathbb{Z}_{36} .

Solution. We have seen that the additive order of \overline{a} in \mathbb{Z}_n is $\operatorname{ord}_+(\overline{a}) = \frac{n}{\operatorname{gcd}(a,n)}$. Thus

$$\text{ord}_{+}(\overline{6}) = \frac{36}{6} = 6 \\ \text{ord}_{+}(\overline{11}) = \frac{36}{1} = 36 \\ \text{ord}_{+}(\overline{18}) = \frac{36}{18} = 2 \\ \text{ord}_{+}(\overline{28}) = \frac{36}{4} = 9$$

Problem 6. Find the multiplicative order of $\overline{10}$ in \mathbb{Z}_{21}^* .

Solution. Compute

$$\overline{10}^{2} = \overline{100} = \overline{5}$$

$$\overline{10}^{3} = \overline{5} \cdot \overline{10} = \overline{50} = \overline{13}$$

$$\overline{10}^{4} = \overline{13} \cdot \overline{10} = \overline{-8} \cdot \overline{10} = -\overline{80} = -\overline{-4} = \overline{4}$$

$$\overline{10}^{5} = \overline{4} \cdot \overline{10} = \overline{40} = \overline{-2} = \overline{19}$$

$$\overline{10}^{6} = \overline{19} \cdot \overline{10} = \overline{-2} \cdot \overline{10} = -\overline{20} = -\overline{-1} = \overline{1}$$

Hence, $\operatorname{ord}_*(\overline{10}) = 6$.

Problem 7. Solve the equation $\overline{17}x = \overline{23}$ in \mathbb{Z}_{71} .

Solution. First, we use the Euclidean algorithm to find the inverse of $\overline{17}$ in \mathbb{Z}_{71} . This computation shows that

$$17(-25) + 71(6) = 1;$$

modding out by 71 yields $\overline{17} \cdot \overline{-25} = \overline{1}$, so $\overline{17}^{-1} = \overline{-25} = \overline{46}$. Multiplying both sides of $\overline{17}x = \overline{23}$ by $\overline{44}$ yields

$$x = \overline{4423} = \overline{46}.$$

Problem 8. Solve the equation $x^2 - \overline{5}x - \overline{2} = \overline{0}$ in \mathbb{Z}_{11} .

Solution. In \mathbb{Z}_{11} , we have $\overline{-5} = \overline{6}$ and $\overline{-2} = \overline{9}$. So this equation becomes $x^2 + \overline{6}x + \overline{9} = (x + \overline{3})^2 = 0$. Since 11 is prime, \mathbb{Z}_{11} has no zero divisors, so $x = -\overline{3} - \overline{8}$ is the only solution.